Alg 1 Week 6 Friday

1. Skill 12: Simplify Exponential Expressions. Simplify, leaving no negative exponents. Show all steps.

$$\frac{b^4b^0 \cdot c^{-2}}{\big(bc\big)^2}$$

2. Skill 13: Multiplying Polynomials: Use a rectangle to multiply and simplify.

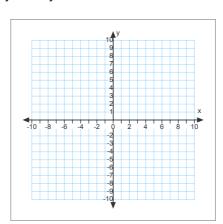
$$(2x^2 + x - 5)(3x - 2)$$

3. Skill 14: Factor a trinomial. Factor completely.

$$6x^3 + 26x^2 - 20x$$

4. Add or subtract, then put answer in standard form.

$$(6x^2-2x+13)-(-7x^2-3x+2)$$

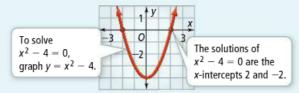

5. Skill 15: Factor Special Polynomials. Factor completely.

$$169x^2 - 49$$

- 6. Find the base of a triangle whose area is $60 \, \text{cm}^2$ and has a height of $8 \, \text{cm}$.
- 7. Graph the function. Label the axis of symmetry and the vertex.

$$y = 2x^2 - 6x + 1$$

X	Y


Notes 9-3 Solving Quadratic Equations

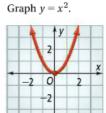
Key Concept Standard Form of a Quadratic Equation

A **quadratic equation** is an equation that can be written in the form $ax^2 + bx + c = 0$, where $a \neq 0$. This form is called the **standard form of a quadratic equation**.

Essential Understanding Quadratic equations can be solved by a variety of methods, including graphing and finding square roots.

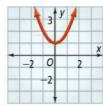
One way to solve a quadratic equation $ax^2 + bx + c = 0$ is to graph the related quadratic function $y = ax^2 + bx + c$. The solutions of the equation are the x-intercepts of the related function.

A quadratic equation can have two, one, or no real-number solutions. In a future course you will learn about solutions of quadratic equations that are not real numbers. In this course, solutions refers to real-number solutions.


The solutions of a quadratic equation and the x-intercepts of the graph of the related function are often called roots of the equation or zeros of the function.

Problem 1 Solving by Graphing

What are the solutions of each equation? Use a graph of the related function.


Graph $y = x^2 - 1$.

 $3x^2 + 1 = 0$

Graph $y = x^2 + 1$.

Problem 2 Solving Using Square Roots

What are the solutions of $3x^2 - 75 = 0$?

Got It? 2. What are the solutions of each equation?

a.
$$m^2 - 36 = 0$$

a.
$$m^2 - 36 = 0$$
 b. $3x^2 + 15 = 0$

c.
$$4d^2 + 16 = 16$$

HW p 564: 8, 9, 15, and 21-31 odd

Solve each equation by graphing the related function. If the equation has no real-number solution, write no solution.

8.
$$x^2 - 9 = 0$$

9.
$$x^2 + 7 = 0$$

8.
$$x^2 - 9 = 0$$
 9. $x^2 + 7 = 0$ **15.** $x^2 + 5 = 5$

Solve each equation by finding square roots. If the equation has no real-number solution, write no solution.

20.
$$n^2 = 81$$

23.
$$r^2 + 49 = 49$$

26.
$$64b^2 = 16$$

29.
$$2r^2 - 32 = 0$$

21.
$$a^2 = 324$$

24.
$$w^2 - 36 = -64$$

27.
$$5q^2 - 20 = 0$$

30.
$$3a^2 + 12 = 0$$

22.
$$k^2 - 196 = 0$$

25.
$$4g^2 = 25$$

28.
$$144 - p^2 = 0$$

31.
$$5z^2 - 45 = 0$$

